Intel Draft for Review

Intel® Platform Innovation Framework
for EFI

Memory Subclass Specification

Draft for Review

Version 0.9
April 1, 2004

a
Memory Subclass Specification Draft for Review e '

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.
Copyright © 2001-2004, Intel Corporation.

Intel order number xxxxxx-001

April 2004 Version 0.9

intel

Draft for Review

Revision History

Revision

Revision History

Date

0.9

First public release.

4/1/04

Version 0.9

April 2004

a
Memory Subclass Specification Draft for Review e '

iv April 2004 Version 0.9

Intel Draft for Review

Contents

I {18 o Yo [0 o3 4 o I 7
L@ =T YT PP 7
Conventions Used in ThiS DOCUMENT......cccoiiiiiii e 7
Data Structure DESCIIPLIONSccoviiiiiiii e e e e e e e e e e e e e 7
Pseudo-Code CONVENTIONScoiiiiiiiiiii et e e e e et e e e e e e e e eer it e e e e 8

I/ oo Te] ¢=To a1 (o @] a1V 7=] o1 o] o 1S3 8

2 DESIGN DISCUSSION L.uuiiiiiiiiie e e et e e e et e e e e et e e e e e et s e e e e aaaneeeeennns 11
OVBIVIBW ...ttt ettt ettt et e e oo oot ettt et e o4 o4 e b bbbttt e e e e e e e e bbb et et e e e e e e e e e nnbbbbneeeeaeeas 11
Yoo] o] PP 11
o] g D L= = VTP T PP PTT RSP 12
CONSUMET VEISUS PIOUUCET ...ttt e et e e e e e e s eeaaeeeas 12
ComplianNCy REQUITEIMENTS ..ot ee ettt e e e e e e e e e s e eaeeeeas 12
(Y=o (=T g oY o] g 4= U1 To] o 13
Memory Subclass Definition............co 13

Data RECOIA HEAUEToviieiii it e e e e e e 13

Data Class HeadEN ... 13

RAW DALAeeeiiieiiie et e e ettt e e e e e e e e e e e r e 13

Data ReCOrd NUMDET ... e e e e e e e 14
ROt To [T =] T o 11 AT o] o S 15
1] oo 18 Tox 1 o] o 0 15
Header INFOMMALIONoooiiie et e e st r e e e e e e s ee s 16
Memory SuBbCIasS DEfiNItION..........ccuuuiiiiiiiieee e 16
EFI_MEMORY_SUBGCLASS.ottt 16

SUBCIASS VEBISION....cciiiiiiiie ettt e e e e e e s b e e e e e e e e e aane 17
EFI_MEMORY_SUBCLASS _VERSION ...ttt 17

(D= 1= B = ToTo] o A0 o= 18
[ICTo T= U0y YA =T o o T Y/ 18

[=To FoTo3 1Y =T g To] PP 18

Memory ReQION SIZeccooeeieeeieeieee e 18
EFI_MEMORY_SIZE_DATA .ottt 18

Physical Memory Array (TYPe 16)cccceveeieieiee e, 20
EFI_MEMORY_ARRAY_LOCATION_DATA ..ottt 20

Memory DevVice (TYPE 17) .o 23
EFI_MEMORY_ARRAY _LINK _DATA ..ottt 23

Memory Array Mapped Address (TYP 19) ...uuiiiiiiiiee et 28
EFI_MEMORY_ARRAY_START_ADDRESS DATA....ccoooiiieeeeeeiiiiiiieeeeenn 28

Memory Device Mapped Address (TYPe 20)....cuuuiiiii i e e e e 30
EFI_MEMORY_DEVICE_START_ADDRESS DATA....ccccociieiiiiiiiiiiieeeeenn 30

Memory Channel (TYPE B7) ..o 32
Memory Channel TYPEoooviveiii et e e e e e e s 32
EFI_MEMORY_CHANNEL_TYPE_DATA ..ottt 32

Memory Channel DEVICEcocuuiiiiiiiieee e 34
EFI_MEMORY_CHANNEL_DEVICE_DATA ...t 34

Version 0.9 April 2004 v

a
Memory Subclass Specification Draft for Review e '

A EXAMPIES . 37
0T F= Ty Y b= T] o] 1= 37
Y =T g o] YA d=To 1o o IS . = 37
Memory Region Size: Example Lccccooeiiii 37

Memory Region Size: EXample 2 ... 38

Physical Memory Array EXAMPIESooiiiiiiiiiiiiiiiiiiieieeeeeieeeieeee ettt eeeaeeeeeeeeeeeeeeeeeeeeeeeeennee 38
Y =T g o] YA A 1 =\ 2 Mo Tox | (o] o [38
MEMOIY AITAY USE ...ttt e e e e e e e e e e e e 38
Memory Error COMECHION........coo e 38
Maximum MemOry CapPaCItYcccvuuiuiiiiiie e e e e e e e e e 39
Number Memory DEVICES........ccooc e 39
MemOory DeviCe EXAMPIESoooiiiiiiiiiiiii et 39
Y =T g o] g YA DAV [t o Lo o S 39
Memory Bank LOCALOrccooooiiiiii e 39
MEMOTY MANUFACTUIETuuiiiiiiee ettt e e e e e e e e e e e e aaanes 39
Memory Serial NUMbDer ... 39
V=T g Lo Y oY= A - T 40
Memory Part NUMDEr ... 40
Memory Array LiNK ... 40
Memory SUDAITAY LINKcoii i 40
Memory Total Width ... 41
MemOry Data WiItth..........oueiiieeii e e e 41
MeMOrY DEVICE SIZE ... 41
MEMOIY FOIM FACION ittt e e e b e e eab e aes 41
MEMOTY DEVICE STiiiieiiiiiiee ettt e e e e e e e e e e s e e 41

Y LT 0o] VAN Y oL TP TP PP 41
Memory TYPE Detallciiiiiiicc e 41
MeMOry TYPE SPEEU......ccce e 42
MEIMOIY STALE ... ettt e e e e e et ettt e e e e e e e earbba e e eeas 42
Memory Array Mapped Address EXamMPIES.....ccoocciiiieiiiiiii e 42
Memory Array Start AdAreSS ... 42
Memory Array ENA AArESScoooiiiiiiiiiiiee et e e 42
Physical Memory Array LinK..........oooor 42
Memory Array Partition WIdth ... 42
Memory Device Mapped Address EXamPpPlesccuviiiiiiiiiiiiiiiiiiiieccee e 43
Memory Device Start AdAress. ... 43
Memory Device ENA AQAIESS.......oouuiiiiii et e e e e e e 43
Physical Memory Device LinK ... 43
Physical Memory Array LINK........oooiiiiiieeee et 43
Memory Device Partition ROW POSItIONcocouiiiiiii e 43
Memory Device Interleave POSItION..........cccooooiiiii i 43
Memory Device Interleave Data Depthccevveiiiiiiiiiiiieee e 44
YTt g gL YA O F=] o[= g] o] S R 44
Y =T g o] A o= T oL g = I 8/ o L= 44
Memory Channel Maximum Loadcoooeviiiiiii 44
Memory Channel DeVvice COUNLcoooeiiiiiieeeeeeeeeeee e 44
Memory Channel DeViCe LOadcoiiii it 44

Vi April 2004 Version 0.9

Intel Draft for Review

1
Introduction

Overview

This specification defines the core code and services that are required for an implementation of the
memory data hub subclass of the Intel® Platform Innovation Framework for EFI (hereafter referred
to as the "Framework™). This specification does the following:

o Describes the basic components of the memory data hub subclass and memory subclass data
records

e Provides code definitions for type and record definitions for the memory subclass that are
architecturally required by the Intel® Platform Innovation Framework for EFI Architecture
Specification

o Provides examples of the data records for the memory subclass

This specification complies with the System Management BIOS (SMBIOS) Reference Specification,
version 2.3.4.

Conventions Used in This Document

This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions

Intel® processors based on 32-bit Intel® architecture (1A-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

STR U CTU R E NA M E: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by

this data structure.

Version 0.9 April 2004 7

Memory Subclass Specification

Draft for Review Intel

Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding

to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In

First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text

Plain text (blue)

Bold

Italic

BOLD Monospace

Bold Monospace

Italic Monospace

Plain Monospace

The normal text typeface is used for the vast majority of the descriptive
text in a specification.

In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

In the online help version of this specification, words in a

Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

In code, words ina Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

April 2004 Version 0.9

intel
) Draft for Review Introduction

text text text In the PDF of this specification, text that is highlighted in yellow
indicates that a change was made to that text since the previous revision
of the PDF. The highlighting indicates only that a change was made
since the previous version; it does not specify what changed. If text was
deleted and thus cannot be highlighted, a note in red and highlighted in
yellow (that looks like (Note: text text text.)) appears where the deletion
occurred.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the
following URL.:

http://www.intel.com/technology/framework/spec.htm

Version 0.9 April 2004 9

http://www.intel.com/technology/framework/spec.htm

a
Memory Subclass Specification Draft for Review e '

10 April 2004 Version 0.9

Intel Draft for Review

2
Design Discussion

Overview

This specification describes a group of data records that have similar characteristics. The data
records are records that will be input to the data hub to be consumed by one or more drivers.

This specification complies with the Intel® Platform Innovation Framework for EFI Data Hub
Specification and it is assumed that the consumer of this specification is well versed in the concept
of the data hub. This specification describes in more detail how to implement a driver that will log
all the non-cache-memory-related data records and how to create drivers that will consume this
data.

This specification also specifies the format of each data record. Each data record must be capable of
being used by current and potential consumers of the data—in other words, the format should also
be consumable by all potential agents. The unit of measurement, if applicable, should be the most
common unit of measurement for the specific data record, and the range of values for a data record
should be usable for the foreseeable future.

Scope

This specification is the contract for non-cache-memory-related data between the non-cache-
memory data drivers and the non-cache-memory data consumers. The data referred to here is not
the data contained in the memory but the data that describes the memory characteristics. This
specification covers all data structures that are memory related, excluding caches, and includes all
the different memory levels in the system. For multiprocessor (MP) systems, it includes all the data
related to all processors in the system.

The data driver (memory driver in this case) does not have to declare all the record types listed in
this specification but should declare only those data types that are applicable. If the data is not
applicable (for example, if no error detection/correction memory exists in the system), the data
consumer should make the necessary adjustment and not declare the associated data records
(memory error information, etc.).

A specific record defines the semantic context of the data. All records related to memory are
documented in this specification. The record type is numbered sequentially and a new record type
can be appended to the end of the list. The record type in this specification defines the semantic
context of the data. The data records in this specification comply to the

EF1 SUBCLASS TYPE1l HEADER.Version field of 1. Type
EFI_SUBCLASS TYPE1l HEADER is defined in the Intel® Platform Innovation Framework for
EFI Data Hub Subclass Design Guide.

Version 0.9 April 2004 11

a
Memory Subclass Specification Draft for Review e '

Data records can be added or deleted as long as backward compatibility is maintained. If a data
record needs to be updated, a new entry to this specification can be added. At some point when the
objectives of this subclass are not accomplished or become inconsistent, an entirely new subclass
with a new Globally Unique Identifier (GUID) will be introduced.

® noTE

The data records and structures sometimes are System Management BIOS (SMBIOS)—centric as the
initial document is based on the SMBIOS requirements.

Error Data

This document does not list any memory error data. That information is in the Intel® Platform
Innovation Framework for EFI Status Codes Specification.

Consumer versus Producer

It is possible that a producer of memory data is also a consumer and vice versa. An example is
memory subunit comprised of multiple memory arrays. The producer of the subunit consumes the
memory array information.

Compliancy Requirements

None of the record numbers described in this document are required by the Extensible Firmware
Interface Specification. Some record number entries may be required by other industry-wide
specifications such as the System Management BIOS (SMBIOS) Reference Specification.

Some ENUM definitions are controlled by the Distributed Management Task Force, Inc. (DMTF)
organization. Refer to their Web site at www.dmtf.org/standards/dmi* and select the link to Master
MIF.

12 April 2004 Version 0.9

intel
) Draft for Review Design Discussion

Header Information

Memory Subclass Definition

The memory subclass belongs to the data class and is identified as the memory subclass by the
GUID. See Memory Subclass Definition in Code Definitions for the definition.

Data Record Header

Each data record that is logged or read starts with a standard header of type
EF1 DATA RECORD HEADER. The format of the header is defined in the Intel® Platform

Innovation Framework for EFI Data Hub Specification.

Data Class Header
Each data record that is a member of the data class starts with a standard header of type
EF1_SUBCLASS TYPE1 HEADER. The format of the header is defined in the Intel® Platform
Innovation Framework for EFI Data Hub Subclass Design Guide. This header follows the data
record header EFI DATA RECORD HEADER, which is defined in the Intel® Platform Innovation
Framework for EFI Data Hub Specification.
The Intel® Platform Innovation Framework for EFI Data Hub Subclass Design Guide provides
generic descriptions of the fields in EF1_SUBCLASS _TYPE1_ HEADER. The following
explanation further clarifies the descriptions for the memory subclass:
e The Instance is the instance number of memory in the system, as multiple memory

subsystems can exist in the system.

e The Sublnstance is the physical memory hierarchy level in the memory subsystem, as
multiple physical memory hierarchy levels can exist in a memory subsystem.

Raw Data

The raw data follows the EFI SUBCLASS TYPE1 HEADER header and its definition is specific
to the RecordNumber. The syntax of the raw data is defined in Data Record Number in Code
Definitions. Type EFI_SUBCLASS_TYPE1 HEADER is defined in the Intel® Platform
Innovation Framework for EFI Data Hub Subclass Design Guide.

Version 0.9 April 2004 13

a
Memory Subclass Specification Draft for Review e '

Data Record Number

14

The EFI SUBCLASS TYPE1l HEADER is followed by a data record. The data record format is
specific to a RecordNumber. The sections in Data Record Number in Code Definitions define the
data RecordNumbers for the memory subclass. The RecordNumbers are subdivided into
different subsections on a per-SMBIOS type for ease of reference. See the Examples section for
examples of these record numbers.

The EF1 INTER LINK DATA structure is used to link together multiple data hub items of the
same subclass. An example is a memory array that is composed of memory modules. A possible
use would be Instance for a memory region or array and Sub Instance for a memory slot.

All generic macros are defined in the Intel® Platform Innovation Framework for EFI Data Hub
Subclass Design Guide. STRING REF is defined in the Intel® Platform Innovation Framework for
EFI Human Interface Infrastructure Specification.

April 2004 Version 0.9

Draft for Review

3
Code Definitions

Introduction

This section contains the basic definitions of the data record header fields that are specific to the
memory subclass, as well as definitions of memory data records. The following data types and data
records are defined in this section:

e EFI

MEMORY

SUBCLASS

e EFI

MEMORY

SUBCLASS VERSION

e EFI

MEMORY

SI1ZE _DATA

e EFI

MEMORY

ARRAY LOCATION DATA

e EFI

MEMORY

ARRAY LINK DATA

e EFI

MEMORY

ARRAY START ADDRESS DATA

e EFI

MEMORY

DEVICE_START _ADDRESS DATA

e EFI

MEMORY

CHANNEL TYPE_DATA

e EFI

MEMORY

CHANNEL_DEVICE_DATA

See the Examples section for examples using these data records.

Version 0.9

April 2004 15

a
Memory Subclass Specification Draft for Review e '

Header Information

Memory Subclass Definition

EFI_MEMORY_SUBCLASS

16

Summary

The memory subclass belongs to the data class and is identified as the memory subclass by the
GUID.

GUID

#define EFI_MEMORY_SUBCLASS_GUID \
{Ox4E8F4EBB, 0x64B9, Ox4E05, Ox9B, 0x18, 0x4C, OxFE, 0x49, 0x23,
0x50, 0Ox97}

Class
#define EF1_MEMORY_SUBCLASS EF1 DATA CLASS DATA

Description

Summary

The memory subclass belongs to the data class and is identified as the memory subclass by the
GUID.
For this subclass, the values defined above are used as follows:

e EFI DATA RECORD HEADER.DataRecordGuid =
EFI MEMORY SUBCLASS GUID, which is the GUID that is specific to the memory
subclass.

e EFI_DATA RECORD_HEADER.DataRecordClass = EFI DATA CLASS DATA. The
"class" may be equal to the GUID "class" or a superset of the GUID "class."

Type EFI_DATA_CLASS_DATA is defined in EF1_DATA_RECORD_HEADER, which is defined

in the Intel® Platform Innovation Framework for EFI Data Hub Specification.

April 2004 Version 0.9

Intel Draft for Review

Subclass Version

Code Definitions

EFI_MEMORY_SUBCLASS_VERSION

Summary
Indicates the version of the memory subclass.

Prototype
#define EFI1_MEMORY_SUBCLASS VERSION 0x0100

Description

This value indicates the version of the memory subclass. It is used in
EF1 SUBCLASS TYPE1l HEADER.Version. Type EFl_SUBCLASS TYPE1l HEADER is
defined in the Intel® Platform Innovation Framework for EFI Data Hub Subclass Design Guide.

Version 0.9 April 2004 17

a
Memory Subclass Specification Draft for Review e '

Data Record Number
Legacy Memory

Legacy Memory

This section describes memory information from an operating system’s point of view and is not
part of the SMBIOS specification.

Memory Region Size
EFI_ MEMORY_SIZE_DATA

Summary
This data record refers to the size of a memory region.

Prototype
typedef struct {
UINT32 ProcessorNumber;
UINT16 StartBusNumber;
UINT16 EndBusNumber ;
EFI MEMORY REGION TYPE MemoryRegionType;
EF1_EXP BASE2 DATA MemorySize;
EFI_PHYSICAL_ADDRESS MemoryStartAddress;
} EFI_MEMORY_SIZE DATA;
Parameters
ProcessorNumber

A zero-based value that indicates which processor(s) can access the memory region.
A value of OxFFFF indicates the region is accessible by all processors.

StartBusNumber
A zero-based value that indicates the starting bus that can access the memory region.
EndBusNumber

A zero-based value that indicates the ending bus that can access the memory region.
A value of OxFF for a PCI system indicates the region is accessible by all buses and
is global in scope. An example of the EndBusNumber not being OXFF is a system
with two or more peer-to-host PCI bridges.

MemoryRegionType
The type of memory region from the operating system’s point of view.
MemoryRegionType values are equivalent to the legacy INT 15 AX = E820 BIOS

command values. Type EFI _MEMORY REGION TYPE is defined in "Related
Definitions” below.

18 April 2004 Version 0.9

[]
In e) Draft for Review Code Definitions

MemorySize

The size of the memory region in bytes. Type EF1 EXP BASE2 DATA is defined
in the Intel® Platform Innovation Framework for EFI Data Hub Subclass Design
Guide.

MemoryStartAddress

The starting physical address of the memory region. Type
EF1_PHYSICAL_ADDRESS is defined in Al locatePages() in the EFI 1.10
Specification.

Description

This data record refers to the size of a memory region. The regions that are described can refer to
physical memory, memory-mapped I/O, or reserved BIOS memory regions. The unit of
measurement of this data record is in bytes.

For this data record, EFI SUBCLASS TYPE1 HEADER.RecordType =
EF1 MEMORY SIZE RECORD NUMBER. Type EF1_SUBCLASS TYPE1 HEADER is defined
in the Intel® Platform Innovation Framework for EFI Data Hub Subclass Design Guide.

Related Definitions

//**

// Record number

//**

#define EFI_MEMORY_SIZE_RECORD_NUMBER 0x00000001

//***************-k**

// EFI_MEMORY_REGION_TYPE

//***************-k**

typedef enum _EFI_MEMORY_REGION_TYPE {

EfiMemoryRegionMemory = 0x01,
EfiMemoryRegionReserved = 0x02,
EfiMemoryRegionAcpi = 0x03,
EfiMemoryRegionNvs = 0x04

3 EFI_MEMORY_REGION_TYPE;

Version 0.9 April 2004 19

a
Memory Subclass Specification Draft for Review e '

Physical Memory Array (Type 16)
EFI_MEMORY_ARRAY_LOCATION_DATA

Summary
This data record refers to the physical memory array.

Prototype
typedef struct {
EFI MEMORY ARRAY LOCATION MemoryArrayLocation;
EF1 MEMORY ARRAY USE MemoryArrayUse;
EFI MEMORY ERROR CORRECTION MemoryErrorCorrection;
EF1 EXP BASE2 DATA MaximumMemoryCapacity;
UINT16 NumberMemoryDevices;

1 EFI_MEMORY_ARRAY_LOCATION_DATA;

Parameters
MemoryArrayLocation

The physical location of the memory array. Type
EF1_MEMORY_ARRAY LOCATION is defined in "Related Definitions" below.

MemoryArrayUse

The memory array usage. Type EFI _ MEMORY ARRAY USE is defined in "Related
Definitions" below.

MemoryErrorCorrection

The primary error correction or detection supported by this memory array. Type
EFI_MEMORY ERROR CORRECTION is defined in "Related Definitions™ below.

MaximumMemoryCapacity

The maximum memory capacity size in kilobytes. If capacity is unknown, then
values of MaximumMemoryCapacity.Value = 0x00 and
MaximumMemoryCapacity.Exponent = 0x8000 are used. Type

EFI EXP BASE2 DATA is defined in the Intel® Platform Innovation Framework
for EFI Data Hub Subclass Design Guide.

NumberMemoryDevices

The number of memory slots or sockets that are available for memory devices in this
array.

20 April 2004 Version 0.9

[]
In e) Draft for Review Code Definitions

Description
This data record refers to the physical memory array. This data record is a structure.
The type definition structure for EFI_MEMORY_ARRAY_LOCATION_DATA is in SMBIOS 2.3.4:
e Table 3.3.17.1, Type 16, Offset Ox4
o Table 3.3.17.2, Type 16, Offset 0x5
e Table 3.3.17.3, Type 16, with the following offsets:
— Offset 0x6
— Offset 0x7
— Offset 0xB
— Offset 0xD
For this data record, EFI_SUBCLASS_TYPE1 HEADER.RecordType =
EFI _MEMORY ARRAY LOCATION RECORD NUMBER. Type

EF1_SUBCLASS_TYPE1_ HEADER is defined in the Intel® Platform Innovation Framework for
EFI Data Hub Subclass Design Guide.

Related Definitions

//***

// Record number

//***

#define EFI_MEMORY_ARRAY_LOCATION_RECORD_NUMBER 0x00000002

//***

// EF1_MEMORY_ARRAY_ LOCATION

//***

typedef enum _EFI_MEMORY_ARRAY LOCATION {

EfiMemoryArrayLocationOther = 0x01,
EfiMemoryArrayLocationUnknown = 0x02,
EfiMemoryArrayLocationSystemBoard = 0x03,
EfiMemoryArraylLocationlsaAddonCard = 0x04,
EfiMemoryArraylLocationEisaAddonCard = 0Ox05,
EfiMemoryArrayLocationPciAddonCard = 0x06,
EfiMemoryArrayLocationMcaAddonCard = 0x07,
EfiMemoryArrayLocationPcmciaAddonCard = 0x08,
EfiMemoryArrayLocationProprietaryAddonCard = 0x09,
EfiMemoryArrayLocationNuBus = OxO0A,
EfiMemoryArrayLocationPc98C20AddonCard = OxAO0,
EfiMemoryArraylLocationPc98C24AddonCard = OxA1l,
EfiMemoryArraylLocationPc98EAddonCard = 0OxA2,
EfiMemoryArrayLocationPc98LocalBusAddonCard = OxA3

} EFI_MEMORY_ARRAY_LOCATION;

Version 0.9 April 2004 21

a
Memory Subclass Specification Draft for Review e '

//***

// EFI_MEMORY_ARRAY_USE

//*********************-k***************************************

typedef enum _EFI_MEMORY_ ARRAY USE {

EfiMemoryArrayUseOther = 0Ox01,
EfiMemoryArrayUseUnknown = 0x02,
EfiMemoryArrayUseSystemMemory = 0x03,
EfiMemoryArrayUseVideoMemory = 0x04,
EfiMemoryArrayUseFlashMemory = 0x05,
EfiMemoryArrayUseNonVolatileRam = 0x06,
EfiMemoryArrayUseCacheMemory = 0x07,

1 EFI_MEMORY_ARRAY_USE;

//***

// EFI_MEMORY_ERROR_CORRECTION

//***

typedef enum _EFI_MEMORY_ERROR_CORRECTION {

EfiMemoryErrorCorrectionOther = 0x01,
EfiMemoryErrorCorrectionUnknown = 0x02,
EfiMemoryErrorCorrectionNone = 0x03,
EfiMemoryErrorCorrectionParity = 0x04,
EfiMemoryErrorCorrectionSingleBitEcc = 0x05,
EfiMemoryErrorCorrectionMultiBitEcc = 0x06,
EfiMemoryErrorCorrectionCrc = 0x07,

} EFI_MEMORY_ERROR_CORRECTION;

22 April 2004 Version 0.9

intel

Memory Device (Type 17)

Draft for Review

EFI_MEMORY_ARRAY_LINK_DATA

Summary
This data record describes a memory device.

Prototype
typedef struct {

}

STRING_REF

STRING_REF

STRING_REF
STRING_REF
STRING_REF
STRING_REF
EF1_INTER LINK DATA

EFI_INTER_LINK_DATA
UINT16
UINT16
EF1_EXP_BASE2 DATA

EF1_MEMORY_FORM_FACTOR

UINT8
EF1_MEMORY_ ARRAY TYPE

EF1_MEMORY_ TYPE DETAIL

EF1_EXP _BASE10 DATA

EF1_MEMORY_STATE

MemoryDevicelLocator;

MemoryBankLocator ;
MemoryManufacturer;
MemorySerialNumber;
MemoryAssetTag;
MemoryPartNumber ;
MemoryArrayLink;
MemorySubArrayLink;
MemoryTotalWidth;
MemoryDataWidth;
MemoryDeviceSize;
MemoryFormFactor;
MemoryDeviceSet;
MemoryType;
MemoryTypeDetail ;
MemoryTypeSpeed;
MemoryState;

EFI_MEMORY _ARRAY LINK_DATA;

Parameters

Version 0.9

MemoryDevicelLocator

Code Definitions

A string that identifies the physically labeled socket or board position where the

memory device is located. Type STRING REF is defined in

EF1 HI1 PROTOCOL.NewString() inthe Intel® Platform Innovation

Framework for EFI Human Interface Infrastructure Specification.

MemoryBankLocator

A string denoting the physically labeled bank where the memory device is located.

MemoryManufacturer

A string denoting the memory manufacturer.

MemorySerialNumber

A string denoting the serial number of the memory device.

MemoryAssetTag

The asset tag of the memory device.

April 2004

23

a
Memory Subclass Specification Draft for Review e '

24

MemoryPartNumber
A string denoting the part number of the memory device.
MemoryArrayLink

A link to a memory array structure set. See Physical Memory Array (Type 16) for
memory array structures. Type EFI_INTER L INK DATA is defined in the Intel®
Platform Innovation Framework for EFI Data Hub Subclass Design Guide.

MemorySubArrayLink

A link to a memory array structure set. See Physical Memory Array (Type 16) for
memory array structures.

MemoryTotalWidth

The total width in bits of this memory device. If there are no error correcting bits,
then the total width equals the data width. If the width is unknown, then set the field
to OXFFFF.

MemoryDataWidth

The data width in bits of the memory device. A data width of 0x00 and a total width
of 0x08 indicate that the device is used solely for error correction.

MemoryDeviceSize

The size in bytes of the memory device. A value of 0x00 denotes that no device is
installed, while a value of all Fs denotes that the size is not known. Type

EF1_EXP BASE2 DATA is defined in the Intel® Platform Innovation Framework
for EFI Data Hub Subclass Design Guide.

MemoryFormFactor

The form factor of the memory device. Type EF1 MEMORY FORM FACTOR is
defined in "Related Definitions" below.

MemoryDeviceSet

A memory device set that must be populated with all devices of the same type and
size. A value of 0x00 indicates that the device is not part of any set. A value of OxFF
indicates that the attribute is unknown. Any other value denotes the set number.

MemoryType

The memory type in the socket. Type EF1 _MEMORY ARRAY_ TYPE is defined in
"Related Definitions" below.

MemoryTypeDetail

The memory type details. Type EFI_MEMORY TYPE DETAIL is defined in
"Related Definitions" below.

MemoryTypeSpeed

The memory speed in megahertz (MHz). A value of 0x00 denotes that the speed is
unknown. Type EF1 EXP BASE10 DATA is defined in the Intel® Platform
Innovation Framework for EFI Data Hub Subclass Design Guide.

April 2004 Version 0.9

[]
In e) Draft for Review Code Definitions

MemoryState

The memory state. Type EFI MEMORY STATE is defined in "Related Definitions"
below.

Description
This data record describes a memory device. This data record is a structure.
The type definition structure for EFI_MEMORY_ARRAY_LINK_DATA is in SMBIOS 2.3.4:

e Table 3.3.18, Type 17, with the following offsets:
— Offset Ox4
— Offset 0x6
— Offset 0x8
— Offset OxA
— Offset OxC
e Table 3.3.18.1, Type 17, with the following offsets:
— Offset OXE
— Offset OxF
— Offset 0x10
— Offset 0x11
o Table 3.3.18.2, Type 17, Offset 0x12
o Table 3.3.18.3, Type 17, with the following offsets:
— Offset 0x13
— Offset 0x15
— Offset 0x17
— Offset 0x18
— Offset 0x19
— Offset Ox1A
For this data record, EFI SUBCLASS TYPE1 HEADER.RecordType =

EFI MEMORY ARRAY LINK RECORD NUMBER. Type EFI_SUBCLASS TYPE1l HEADER is
defined in the Intel® Platform Innovation Framework for EFI Data Hub Subclass Design Guide.

Related Definitions

//**

// Record number

//**

#define EFI_MEMORY_ARRAY_ LINK_RECORD NUMBER 0x00000003

Version 0.9 April 2004 25

Memory Subclass Specification

26

Draft for Review

EfiMemoryFormFactorOther
EfiMemoryFormFactorUnknown
EfiMemoryFormFactorSimm

EfiMemoryFormFactorSip

EfiMemoryFormFactorChip

EfiMemoryFormFactorDip
EfiMemoryFormFactorZip

EfiMemoryFormFactorProprietaryCard

EfiMemoryFormFactorDimm
EfiMemoryFormFactorTsop
EfiMemoryFormFactorRowOfChips
EfiMemoryFormFactorRimm
EfiMemoryFormFactorSodimm
EfiMemoryFormFactorSrimm

EFI1_MEMORY_FORM_FACTOR;

EfiMemoryTypeOther
EfiMemoryTypeUnknown
EfiMemoryTypeDram
EfiMemoryTypeEdram
EfiMemoryTypeVram
EfiMemoryTypeSram
EfiMemoryTypeRam
EfiMemoryTypeRom
EfiMemoryTypeFlash
EfiMemoryTypeEeprom
EfiMemoryTypeFeprom
EfiMemoryTypeEprom
EfiMemoryTypeCdram
EfiMemoryType3Dram
EfiMemoryTypeSdram
EfiMemoryTypeSgram
EfiMemoryTypeRdram
EfiMemoryTypeDdr

} EFI_MEMORY_ARRAY TYPE;

0x01,
0x02,
0x03,
0x04,
0x05,
0x06,
0x07,
0x08,
0x09,
Ox0A,
0x0B,
0x0C,
0x0D,
OxOE,
OxOF,
0x10,
Oox11,
0x12

April 2004

//**

// EF1_MEMORY_FORM_FACTOR

//**

typedef enum _EFI_MEMORY FORM_FACTOR {

0x01,
0x02,
0x03,
0x04,
0x05,
0x06,
0x07,
0x08,
0x09,
Ox0A,
0x0B,
0x0C,
0x0D,
OxO0E

//**

// EF1_MEMORY_ARRAY_ TYPE

//**

typedef enum _EFI_MEMORY ARRAY TYPE {

intel

Version 0.9

intel

Draft for Review

Code Definitions

//**

// EF1_MEMORY_TYPE_DETAIL

//**

typedef enum {

UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32

} EFI_MEMORY_TYPE_DETAIL

Reserved
Other
Unknown
FastPaged
StaticColumn
PseudoStatic
Rambus
Synchronous
Cmos

Edo
WindowDram
CacheDram
Nonvolatile
Reservedl

//**

// EF1_MEMORY_STATE

//**

typedef enum {

EfiMemoryStateEnabled
EfiMemoryStateUnknown
EfiMemoryStateUnsuppor

EfiMemoryStateError

EfiMemoryStateAbsent
EfiMemoryStateDisable

} EFI_MEMORY_STATE;

Version 0.9

te
3

0,
1,
d =2,

5

I

April 2004

27

a
Memory Subclass Specification Draft for Review e '

Memory Array Mapped Address (Type 19)
EFI_MEMORY_ARRAY_START_ADDRESS_DATA

Summary
This data record refers to a specified physical memory array associated with a given memory range.

Prototype
typedef struct {
EF1_PHYSICAL_ADDRESS MemoryArrayStartAddress;
EFI_PHYSICAL_ADDRESS MemoryArrayEndAddress;
EF1_INTER LINK DATA PhysicalMemoryArrayLink;
UINT16 MemoryArrayPartitionWidth;

1 EFI_MEMORY_ARRAY_START_ADDRESS_DATA;

Parameters
MemoryArrayStartAddress

The starting physical address in bytes of memory mapped to a specified physical
memory array. Type EF1_PHYSICAL_ADDRESS is defined in
AllocatePages() in the EFI 1.10 Specification.

MemoryArrayEndAddress

The last physical address in bytes of memory mapped to a specified physical memory
array.

PhysicalMemoryArrayLink

See Physical Memory Array (Type 16) for physical memory array structures. Type
EFI INTER LINK DATA is defined in the Intel® Platform Innovation Framework
for EFI Data Hub Subclass Design Guide.

MemoryArrayPartitionWidth

The number of memory devices that form a single row of memory for the address
partition.

Description

This data record refers to a specified physical memory array associated with a given memory range.
This data record is a structure.

The type definition structure for EFI_MEMORY_ARRAY_START_ADDRESS DATA s in
SMBIOS 2.3.4, Table 3.3.20, Type 19, with the following offsets:

e Offset Ox4

e Offset 0x8

e Offset OxC

e Offset OXE

28 April 2004 Version 0.9

[]
In e) Draft for Review Code Definitions

For this data record, EFI SUBCLASS TYPE1 HEADER.RecordType =

EF1 MEMORY ARRAY START ADDRESS RECORD NUMBER. Type
EFI1_SUBCLASS TYPE1 HEADER is defined in the Intel® Platform Innovation Framework for
EFI Data Hub Subclass Design Guide.

Related Definitions

//**

// Record number

//**

#define EFI1_MEMORY_ARRAY_START_ADDRESS_RECORD_NUMBER 0x00000004

Version 0.9 April 2004 29

a
Memory Subclass Specification Draft for Review e '

Memory Device Mapped Address (Type 20)
EFI_MEMORY_DEVICE_START_ADDRESS_DATA

Summary
This data record refers to a physical memory device that is associated with a given memory range.

Prototype
typedef struct {

EFI_PHYSICAL_ADDRESS MemoryDeviceStartAddress;
EF1_PHYSICAL_ADDRESS MemoryDeviceEndAddress;
EF1_INTER LINK DATA PhysicalMemoryDevicelLink;
EFI1_INTER_LINK_DATA PhysicalMemoryArrayLink;
UINTS8 MemoryDevicePartitionRowPosition;
UINTS8 MemoryDevicelnterleavePosition;
UINTS MemoryDevicelnterleaveDataDepth;

} EFI_MEMORY_DEVICE_START_ADDRESS_DATA;

Parameters
MemoryDeviceStartAddress

The starting physical address that is associated with the device. Type
EF1_PHYSICAL_ADDRESS is defined in Al locatePages() in the EFI 1.10

Specification.
MemoryDeviceEndAddress

The ending physical address that is associated with the device.
PhysicalMemoryDevicelLink

A link to the memory device data structure. See Memory Device (Type 17). Type
EF1 INTER LINK DATA is defined in the Intel® Platform Innovation Framework

for EFI Data Hub Subclass Design Guide.
PhysicalMemoryArrayLink

A link to the memory array data structure. See Physical Memory Array (Type 16).
MemoryDevicePartitionRowPosition

The position of the memory device in a row. A value of 0x00 is reserved and a value
of OxFF indicates that the position is unknown.

MemoryDevicelnterleavePosition
The position of the device in an interleave.
MemoryDevicelnterleaveDataDepth

The maximum number of consecutive rows from the device that are accessed in a
single interleave transfer. A value of 0x00 indicates that the device is not interleaved
and a value of OXFF indicates that the interleave configuration is unknown.

30 April 2004 Version 0.9

[]
In e) Draft for Review Code Definitions

Description

This data record refers to a physical memory device that is associated with a given memory range.
This data record is a structure.

The type definition structure for EFI_MEMORY_DEVICE_START_ADDRESS DATA s in
SMBIOS 2.3.4, Table 3.3.21, Type 20, with the following offsets:

o Offset 0x4

e Offset 0x8

o Offset 0xC

o Offset OXE

o Offset 0x10

e Offset Ox11

o Offset 0x12

For this data record, EFI SUBCLASS TYPE1 HEADER.RecordType =

EFI _MEMORY DEVICE START ADDRESS RECORD NUMBER. Type
EFI1_SUBCLASS TYPE1l HEADER is defined in the Intel® Platform Innovation Framework for
EFI Data Hub Subclass Design Guide.

Related Definitions

//**

// Record number

//**

#define EFI_MEMORY_DEVICE_START ADDRESS RECORD NUMBER 0x00000005

Version 0.9 April 2004 31

a
Memory Subclass Specification Draft for Review e '

Memory Channel (Type 37)

Memory Channel Type

EFI_MEMORY_CHANNEL_TYPE_DATA

32

Summary
This data record refers the type of memory that is associated with the channel.

Prototype
typedef struct {
EFI MEMORY CHANNEL TYPE MemoryChannel Type;
UINTS8 MemoryChanne IMaximumLoad;
UINT8 MemoryChannelDeviceCount;

} EFI_MEMORY_CHANNEL_TYPE_DATA;

Parameters
MemoryChannelType

The type of memory that is associated with the channel. Type
EFI_MEMORY CHANNEL TYPE is defined in "Related Definitions" below.

MemoryChanne IMaximumLoad

The maximum load that is supported by the channel.
MemoryChannelDeviceCount
The number of memory devices on this channel.

Description

This data record refers the type of memory that is associated with the channel. This data record is a
structure.

The type definition structure for EFI_MEMORY_CHANNEL_TYPE_DATA is in SMBIOS 2.3.4,
Table 3.3.38, Type 37, with the following offsets:

o Offset 0x4

o Offset 0x5

e Offset 0x6

For this data record, EFI SUBCLASS TYPE1 HEADER.RecordType =
EFI MEMORY CHANNEL TYPE RECORD NUMBER. Type EF1_SUBCLASS TYPE1l HEADER
is defined in the Intel® Platform Innovation Framework for EFI Data Hub Subclass Design Guide.

April 2004 Version 0.9

[]
In e) Draft for Review Code Definitions

Related Definitions

//**

// Record number

//**

#define EFI_MEMORY_CHANNEL_TYPE_RECORD_NUMBER 0x000000006

//**

// EFI_MEMORY_CHANNEL_TYPE

//**

typedef enum _EFI_MEMORY_CHANNEL_TYPE {
EfiMemoryChannel TypeOther
EfiMemoryChannel TypeUnknown
EfiMemoryChannel TypeRambus
EfiMemoryChannel TypeSyncLink

} EFI_MEMORY_CHANNEL_TYPE;

A WN PR

Version 0.9 April 2004

33

a
Memory Subclass Specification Draft for Review e '

Memory Channel Device
EFI_MEMORY_CHANNEL_DEVICE_DATA

Summary
This data record refers to the memory device that is associated with the memory channel.

Prototype
typedef struct _EFI_MEMORY_CHANNEL_DEVICE_DATA {
UINT8 Deviceld;
EF1 INTER LINK DATA DevicelLink;
UINT8 MemoryChannelDeviceload;
} EFI_MEMORY_CHANNEL_DEVICE_DATA;
Parameters
Deviceld

A number between one and MemoryChanne IDeviceCount plus an arbitrary
base. See Memory Channel Type.

DevicelLink

The Link of the associated memory device. See Memory Device (Type 17) for
memory devices. Type EF1 INTER LINK DATA is defined in the Intel® Platform
Innovation Framework for EFI Data Hub Subclass Design Guide.

MemoryChannelDevicelLoad

The number of load units that this device consumes.

Description

This data record refers to the memory device that is associated with the memory channel. This data
record is a structure.

The type definition structure for EFI_MEMORY_CHANNEL_DEVICE_DATA is in SMBIOS 2.3.4,
Table 3.3.38, Type 37, with the following offsets:

e Offset 0x7

o Offset 0x8

For this data record, EFI SUBCLASS TYPE1 HEADER.RecordType =

EF1 MEMORY CHANNEL DEVICE RECORD NUMBER. Type
EFI_SUBCLASS TYPE1l HEADER is defined in the Intel® Platform Innovation Framework for
EFI Data Hub Subclass Design Guide.

34 April 2004 Version 0.9

[]
In e) Draft for Review Code Definitions

Related Definitions

//***************-k**

// Record number

//***************-k**

#define EFI_MEMORY_CHANNEL_DEVICE_RECORD_NUMBER 0x00000007

Version 0.9 April 2004 35

a
Memory Subclass Specification Draft for Review e '

36 April 2004 Version 0.9

Intel Draft for Review

4
Examples

Legacy Examples
Memory Region Size

Memory Region Size: Example 1

Data Example: Two processors each have private memory of 1 MB, while the rest of the 64 MB
memory is global. Memory is available on all PCI buses and is system memory. One agent having
the GUID of global memory usage produces all data. Note that 1 MB base-2 has an exponent of
20 decimal or 0x14

MemoryRegionO.ProducerName = GUID of global memory usage;
MemoryRegionO. Instance = 0x01;
MemoryRegionO.ProcessorNumber = 0x00;
MemoryRegionO.StartBusNumber = 0x00;
MemoryRegionO.EndBusNumber = OxFF;
MemoryRegionO.RegionType = EfiMemoryRegionMemory;
MemoryRegionO._MemorySize._Value = 0x01;
MemoryRegionO.MemorySize.Exponent = 0x14;
MemoryRegionO.MemoryStartAddress = 0x00;

MemoryRegionl.ProducerName = GUID of global memory usage;
MemoryRegionl. Instance = 0x02;
MemoryRegionl.ProcessorNumber = 0x00;
MemoryRegionl.StartBusNumber = 0x00;
MemoryRegionl._EndBusNumber = OxFF;
MemoryRegionl.MemoryRegionType = EfiMemoryRegionMemory;
MemoryRegionl._MemorySize.Value = 0x01;
MemoryRegionl._MemorySize_.Exponent = 0x14;
MemoryRegionl._MemoryStartAddress = 0x00;

MemoryRegion2.ProducerName = GUID of global memory usage;
MemoryRegion2. Instance = 0x03;
MemoryRegion2.ProcessorNumber = OXFFFF;
MemoryRegion2.StartBusNumber = 0x00;
MemoryRegion2.EndBusNumber = OxFF;
MemoryRegion2.MemoryRegionType = EfiMemoryRegionMemory;
MemoryRegion2.MemorySize.Value = Ox3F;
MemoryRegion2.MemorySize.Exponent = 0x14;
MemoryRegion2.MemoryStartAddress = 0x100000;

Version 0.9 April 2004 37

a
Memory Subclass Specification Draft for Review e '

Memory Region Size: Example 2

Data Example: There are two peer-to-host bridges. The first peer-to-host bridge has bus 0 through
0x3F and the second peer-to-host bridge has the remaining buses. Each peer-to-host bridge has
32 MB of memory. Memory is available to all processors and is system memory.

MemoryRegionO.ProducerName = GUID of global memory usage;
MemoryRegionO. Instance = 0x01;
MemoryRegionO.ProcessorNumber = OXFFFF;
MemoryRegionO.StartBusNumber = 0x00;
MemoryRegionO.EndBusNumber = Ox3F;
MemoryRegionO.MemoryRegionType = EfiMemoryRegionMemory;
MemoryRegionO.MemorySize.Value = 0x20;
MemoryRegionO.MemorySize.Exponent = 0x14;
MemoryRegionO.MemoryStartAddress = 0x00;

MemoryRegionl.ProducerName = GUID of global memory usage;
MemoryRegionl. Instance = 0x02;
MemoryRegionl._ProcessorNumber = OXFFFF;
MemoryRegionl.StartBusNumber = 0x40;
MemoryRegionl.EndBusNumber = OxFF;
MemoryRegionl.MemoryRegionType = EfiMemoryRegionMemory;
MemoryRegionl._MemorySize.Value = 0x20;
MemoryRegionl._MemorySize.Exponent = 0x14;
MemoryRegionl._MemoryStartAddress = 0x2000000;

Physical Memory Array Examples

Memory Array Location

Data Example: The memory array is on the system board.

MemoryRegion3. Instance = 0x01;
MemoryRegion3.MemoryArraylLocation =
EfiMemoryArraylLocationSystemBoard;

Memory Array Use

Data Example: The memory array is system memory.
MemoryArrayUse = EfiMemoryArrayUseSystemMemory;

Memory Error Correction

Data Example: Memory error correction is multibit error correction code (ECC).
MemoryErrorCorrection = EFiMemoryErrorCorrectionMuliBitEcc;

38 April 2004 Version 0.9

Intel Draft for Review

Maximum Memory Capacity

Data Example: The maximum memory capacity is 1 GB.

MaximumMemoryCapacity.Value = 0x1;
MaximumMemoryCapacity.Exponent = Ox1E;

Number Memory Devices

Data Example: The memory module has six memory slots

MemoryRegion3. Instance = 0x01;
MemoryRegion3.Sublnstance = 0x00;
MemoryRegion3.NumberMemoryDevices = 0x06;

Memory Device Examples

Memory Device Locator

Data Example: The memory device locator is C4R2.
MemoryDevicelLocator = String reference to “C4R2”,0;

Memory Bank Locator

Data Example: The memory bank is C4.
MemoryBankLocator = String reference to “C4”,0;

Memory Manufacturer

Data Example: The memory manufacturer is Samsung.
MemoryManufacturer = String reference to “Samsung’,0;

Memory Serial Number

Data Example: The memory serial number is 9Q3005.
MemorySerialNumber = String reference to “9Q3005”,0;

Version 0.9 April 2004

Examples

39

a
Memory Subclass Specification Draft for Review e '

Memory Asset Tag

Data Example: The asset tag is 1234.
MemoryAssetTag = String reference to “1234”,0;

Memory Part Number

Data Example: The memory part number is 987654.
MemoryPartNumber = String reference to “987654,0;

Memory Array Link
Data Example: The memory device is part of a memory array that has an Instance of 0x1. It is
in slot four and therefore has a Sub Instance of 0x04. Note that the array has no
Sublnstance.

MemoryRegion3. Instance = 0x01
MemoryRegion3.Sublnstance = 0x04
MemoryRegion3.MemoryArrayLink. Instance = 0x01;
MemoryRegion3.MemoryArrayLink.Sublnstance = 0x00;

Memory Subarray Link

Data Example: Instance 0x03 refers to an array of memory slots. Each slot is defined by the
Sublnstance. MemorySubArrayLink for slot four refers to a new array (the memory stick in
the slot) with Instance 0x27. The Sub Instance refers to the memory stick side.
MemorySubArrayL ink for the second side refers to a new array (the side) with Instance
0x53. The SubInstance refers to the memory bank. MemorySubArrayL ink refers to a new
array (the third bank) with Instance 0x9A. The SubInstance refers to a fifth memory chip.

The hierarchy looks like the following:
Memory Subsystem: Instance = 0x03
Memory Slot: Sublnstance = 0x04; Instance = 0x027
Memory Stick Side: Sublnstance = 0x02; Instance = 0x53
Memory Bank: Sublnstance = 0x03; Instance O0x9A

40 April 2004 Version 0.9

intel
) Draft for Review Examples

Memory Total Width

Data Example: Total memory width is 36 decimal or 0x24. The width is 32 bits data plus 4 bits
parity.
MemoryTotalWidth = 0x24;

Memory Data Width

Data Example: Memory data width is 32 bits decimal or 0x20.
MemoryDataWidth = 0x20;

Memory Device Size

Data Example: The maximum memory capacity is 1 MB.

MemoryDeviceSize.Value = 0x1;
MemoryDeviceSize.Exponent = 0x0014;

Memory Form Factor

Data Example: The memory form factor is dual inline memory module (DIMM).
MemoryFormFactor = EfiMemoryFormFactorDimm;

Memory Device Set

Data Example: Memory is part of device set 2.
MemoryDeviceSet = 0x2;

Memory Type

Data Example: The memory type ID is DRAM.
MemoryType = EfiMemoryTypeDram;

Memory Type Detail

Data Example: The memory type detail is fast-paged memory.
MemoryTypeDetail = 01000b;

Version 0.9 April 2004 41

a
Memory Subclass Specification Draft for Review e '

Memory Type Speed

Data Example: Memory speed is 133 MHz decimal or 0x85.

MemoryTypeSpeed.Value = 0x85;
MemoryTypeSpeed.Exponent = 0x00;

Memory State

Data Example: The memory state is enabled.
MemoryState = EfiMemoryStateEnabled;

Memory Array Mapped Address Examples

Memory Array Start Address

Data Example: The memory array start address is 1 GB.
MemoryArrayStartAddress = 0x4000 0000;

Memory Array End Address

Data Example: The memory array is 1 GB in length and starts at 1 GB.
MemoryArrayEndAddress = Ox7FFF FCOO;

Physical Memory Array Link

Data Example: Memory is part of the physical array Instance 0x01.

MemoryRegion3. Instance = 0x01;

MemoryRegion3.Sublnstance = 0x00;
MemoryRegion3.PhysicalMemoryArrayLink. Instance = O0x01;
MemoryRegion3.PhysicalMemoryArrayLink.Sublnstance = 0x00;

Memory Array Partition Width

Data Example: The memory array consists of 36 decimal devices or 0x24.
MemoryArrayPartitionWidth = 0x24;

42 April 2004 Version 0.9

intel
) Draft for Review Examples

Memory Device Mapped Address Examples

Memory Device Start Address

Data Example: The memory array start address is 1 GB.
MemoryArrayStartAddress = 0x4000 0000;

Memory Device End Address

Data Example: The memory array is 1 GB in length and starts at 1 GB.
MemoryArrayEndAddress = Ox7FFF FCOO;

Physical Memory Device Link

Data Example: Memory is part of the physical memory device Instance 0x01 and
SublInstance 0x04 (slot four). Also see the examples in Memory Device Examples.
MemoryRegion3. Instance = 0x01;
MemoryRegion3.Sublnstance = 0x04;
MemoryRegion3.PhysicalMemoryDevicelLink. Instance = 0x01;
MemoryRegion3.PhysicalMemoryDevicelLink.Sublnstance = 0x04;

Physical Memory Array Link

Data Example: Memory is part of the physical array Instance 0x01. Also see the examples in
Physical Memory Array Examples.

MemoryRegion3. Instance = 0x01;

MemoryRegion3.Sublnstance = 0x04;
MemoryRegion3.PhysicalMemoryArrayLink. Instance = Ox01;
MemoryRegion3.PhysicalMemoryArrayLink.Sublnstance = 0x04;

Memory Device Partition Row Position

Data Example: Memory is the fourth device.
MemoryDevicePartitionRowPosition = 0x4;

Memory Device Interleave Position

Data Example: Memory is the second device in interleave.
MemoryDevicelnterleavePosition = 0x2;

Version 0.9 April 2004

43

a
Memory Subclass Specification Draft for Review e '

Memory Device Interleave Data Depth

Data Example: Memory accesses two rows for an interleave transaction.
MemoryDevicelnterleaveDataDepth = 0x2;

Memory Channel Examples

Memory Channel Type

Data Example: The memory channel is Rambus.
MemoryChannelType = EfiMemoryChannelTypeRamBus;

Memory Channel Maximum Load

Data Example: The memory channel maximum load is 144 decimal units or 0x90.
MemoryChannelMaximumLoad = 0x90;

Memory Channel Device Count

Data Example: The memory device count is 36 decimal or 0x24.
MemoryChannelDeviceCount = 0x0000 0000 0000 0400;

Memory Channel Device Load

Data Example: Each memory device has a load of four units and is associated with the physical
device Instance 0x427. This memory device is the third in this channel.
MemoryRegion3. Instance = 0x27;
MemoryRegion3.Deviceld = 0x3;
MemoryRegion3.DevicelLink. Instance = 0x427;
MemoryRegion3.MemoryChannelDeviceLoad = 0x04;

44 April 2004 Version 0.9

	Intel® Platform Innovation Framework for EFI Memory Subclass Specification
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Conventions Used in This Document
	Data Structure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Design Discussion
	Overview
	Scope
	Error Data
	Consumer versus Producer
	Compliancy Requirements
	Header Information
	Memory Subclass Definition
	Data Record Header
	Data Class Header
	Raw Data

	Data Record Number

	3. Code Definitions
	Introduction
	Header Information
	Memory Subclass Definition
	EFI_MEMORY_SUBCLASS

	Subclass Version
	EFI_MEMORY_SUBCLASS_VERSION

	Data Record Number
	Legacy Memory
	Legacy Memory
	Memory Region Size
	EFI_MEMORY_SIZE_DATA

	Physical Memory Array (Type 16)
	EFI_MEMORY_ARRAY_LOCATION_DATA

	Memory Device (Type 17)
	EFI_MEMORY_ARRAY_LINK_DATA

	Memory Array Mapped Address (Type 19)
	EFI_MEMORY_ARRAY_START_ADDRESS_DATA

	Memory Device Mapped Address (Type 20)
	EFI_MEMORY_DEVICE_START_ADDRESS_DATA

	Memory Channel (Type 37)
	Memory Channel Type
	EFI_MEMORY_CHANNEL_TYPE_DATA

	Memory Channel Device
	EFI_MEMORY_CHANNEL_DEVICE_DATA

	4. Examples
	Legacy Examples
	Memory Region Size
	Memory Region Size: Example 1
	Memory Region Size: Example 2

	Physical Memory Array Examples
	Memory Array Location
	Memory Array Use
	Memory Error Correction
	Maximum Memory Capacity
	Number Memory Devices

	Memory Device Examples
	Memory Device Locator
	Memory Bank Locator
	Memory Manufacturer
	Memory Serial Number
	Memory Asset Tag
	Memory Part Number
	Memory Array Link
	Memory Subarray Link
	Memory Total Width
	Memory Data Width
	Memory Device Size
	Memory Form Factor
	Memory Device Set
	Memory Type
	Memory Type Detail
	Memory Type Speed
	Memory State

	Memory Array Mapped Address Examples
	Memory Array Start Address
	Memory Array End Address
	Physical Memory Array Link
	Memory Array Partition Width

	Memory Device Mapped Address Examples
	Memory Device Start Address
	Memory Device End Address
	Physical Memory Device Link
	Physical Memory Array Link
	Memory Device Partition Row Position
	Memory Device Interleave Position
	Memory Device Interleave Data Depth

	Memory Channel Examples
	Memory Channel Type
	Memory Channel Maximum Load
	Memory Channel Device Count
	Memory Channel Device Load

