
 Draft for Review

Intel® Platform Innovation Framework
for EFI

SMBus Host Controller Protocol
Specification

Draft for Review

Version 0.9
April 1, 2004

SMBus Host Controller Protocol Specification Draft for Review

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2001–2004, Intel Corporation.

Intel order number xxxxxx-001

ii April 2004 Version 0.9

 Draft for Review

Revision History
Revision Revision History Date

0.9 First public release. 4/1/04

Version 0.9 April 2004 iii

SMBus Host Controller Protocol Specification Draft for Review

iv April 2004 Version 0.9

 Draft for Review

Contents

1 Introduction .. 7
Overview ... 7
Conventions Used in This Document.. 7

Data Structure Descriptions ... 7
Protocol Descriptions ... 8
Procedure Descriptions.. 8
Pseudo-Code Conventions .. 9
Typographic Conventions... 9

2 Design Discussion ... 11
Overview ...11
Related Information... 11
SMBus Host Controller Protocol Terms .. 12
SMBus Host Controller Protocol Overview ... 12

3 Code Definitions... 13
Introduction ... 13
SMBus Host Controller Protocol ... 14

EFI_SMBUS_HC_PROTOCOL.. 14
EFI_SMBUS_HC_PROTOCOL.Execute() ... 16
EFI_SMBUS_HC_PROTOCOL.ArpDevice().. 18
EFI_SMBUS_HC_PROTOCOL.GetArpMap().. 20
EFI_SMBUS_HC_PROTOCOL.Notify() ... 21

Version 0.9 April 2004 v

SMBus Host Controller Protocol Specification Draft for Review

vi April 2004 Version 0.9

 Draft for Review

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
System Management Bus (SMBus) Host Controller Protocol of the Intel® Platform Innovation
Framework for EFI (hereafter referred to as the "Framework"). This protocol is used by code,
typically early chipset drivers, and SMBus bus drivers that are running in the EFI Boot Services
environment to perform data transactions over the SMBus. This specification does the following:
• Describes the basic components of the SMBus Host Controller Protocol
• Provides code definitions for the SMBus Host Controller Protocol and the SMBus-related type

definitions that are architecturally required by the Intel® Platform Innovation Framework for
EFI Architecture Specification

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.
In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.
The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Version 0.9 April 2004 7

SMBus Host Controller Protocol Specification Draft for Review

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

8 April 2004 Version 0.9

 Draft for Review Introduction

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).
Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:
Plain text The normal text typeface is used for the vast majority of the descriptive

text in a specification.
Plain text (blue) In the online help version of this specification, any plain text that is

underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
 Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

Version 0.9 April 2004 9

SMBus Host Controller Protocol Specification Draft for Review

text text text In the PDF of this specification, text that is highlighted in yellow
indicates that a change was made to that text since the previous revision
of the PDF. The highlighting indicates only that a change was made
since the previous version; it does not specify what changed. If text was
deleted and thus cannot be highlighted, a note in red and highlighted in
yellow (that looks like (Note: text text text.)) appears where the deletion
occurred.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.
See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.
The Framework Interoperability and Component Specifications help system is available at the
following URL:
http://www.intel.com/technology/framework/spec.htm

10 April 2004 Version 0.9

http://www.intel.com/technology/framework/spec.htm

 Draft for Review

2
Design Discussion

Overview
This document describes the System Management Bus (SMBus) Host Controller Protocol. This
protocol provides an I/O abstraction for an SMBus host controller. An SMBus host controller is a
hardware component that interfaces to an SMBus. It moves data between system memory and
devices on the SMBus by processing data structures and generating transactions on the SMBus. The
following use this protocol:
• An SMBus bus driver to perform all data transactions over the SMBus
• Early chipset drivers that need to manage devices that are required early in the Driver

Execution Environment (DXE) phase, before the Boot Device Selection (BDS) phase
This protocol should be used only by drivers that require direct access to the SMBus.
Considerable discussion has been done to understand the usage model of the EFI Driver Model in
the SMBus. Although, the EFI Driver Model concepts can be applied to SMBus, only the SMBus
Host Controller Protocol was created for now for the following reasons:
• The EFI Driver Model is designed primarily for boot devices. Boot devices are unlikely to be

connected to the SMBus because of SMBus-intrinsic capability. They are slow and not
enumerable.

• The current usage model of SMBus is to enable and configure devices early during the boot
phase, before BDS.

If some of these assumptions become obsolete and require being revisited in the future, this
specification is extensible to convert to the EFI Driver Model.

Related Information
The following publications and sources of information may be useful to you or are referred to by
this specification. See Related Information from Intel in the master Framework help system for the
URLs for EFI specifications and other documentation from Intel.

Industry Specifications
• System Management Bus (SMBus) Specification, version 2.0, SBS Implementers Forum,

August 3, 2000:
http://www.smbus.org*

• PCI Local Bus Specification, revision 2.2, PCI Special Interest Group: See Industry
Specifications in the master Framework help system for the URL for specifications from the
PCI SIG.

Version 0.9 April 2004 11

SMBus Host Controller Protocol Specification Draft for Review

SMBus Host Controller Protocol Terms
The following terms are used throughout this document to describe the model for constructing
SMBus Host Controller Protocol instances in the DXE environment. See the Glossary in the master
Framework help system for explanations of Framework-specific terms.

PEC
Packet Error Code. It is similar to a checksum data of the data coming across the SMBus
wire.

SMBus
System Management Bus.

SMBus host controller
Provides a mechanism for the processor to initiate communications with SMBus slave
devices. This controller can be connected to a main I/O bus such as PCI.

SMBus master device
Any device that initiates SMBus transactions and drives the clock.

SMBus slave device
The target of an SMBus transaction, which is driven by some master.

UDID
Unique Device Identifier. A 128-bit value that a device uses during the Address Resolution
Protocol (ARP) process to uniquely identify itself.

SMBus Host Controller Protocol Overview
The interfaces that are provided in the EFI_SMBUS_HC_PROTOCOL are used to manage data
transactions on the SMBus. The EFI_SMBUS_HC_PROTOCOL is designed to support SMBus 1.0–
and 2.0–compliant host controllers.
Each instance of the EFI_SMBUS_HC_PROTOCOL corresponds to an SMBus host controller in a
platform. To provide support for early drivers that need to communicate on the SMBus, this
protocol is available before the Boot Device Selection (BDS) phase. During BDS, this protocol can
be attached to the device handle of an SMBus host controller that is created by a device driver for
the SMBus host controller's parent bus type. For example, an SMBus controller that is implemented
as a PCI device would require a PCI device driver to produce an instance of the
EFI_SMBUS_HC_PROTOCOL.
See SMBus Host Controller Protocol in Code Definitions for the definition of this protocol.

12 April 2004 Version 0.9

 Draft for Review

3
Code Definitions

Introduction
This section contains the basic definitions of the SMBus Host Controller Protocol. The following
protocol is defined in this section:
• EFI_SMBUS_HC_PROTOCOL
This section also contains the definitions for additional data types and structures that are
subordinate to the structures in which they are called. The following types or structures can be
found in "Related Definitions" of the parent function definition:
• EFI_SMBUS_NOTIFY_FUNCTION

Version 0.9 April 2004 13

SMBus Host Controller Protocol Specification Draft for Review

SMBus Host Controller Protocol

EFI_SMBUS_HC_PROTOCOL

Summary
Provides basic SMBus host controller management and basic data transactions over the SMBus.

GUID
#define EFI_SMBUS_HC_PROTOCOL_GUID \
{0xe49d33ed, 0x513d, 0x4634, 0xb6, 0x98, 0x6f, 0x55, 0xaa, 0x75,
0x1c, 0x1b}

Protocol Interface Structure
typedef struct _EFI_SMBUS_HC_PROTOCOL {
 EFI_SMBUS_HC_EXECUTE_OPERATION Execute;
 EFI_SMBUS_HC_PROTOCOL_ARP_DEVICE ArpDevice;
 EFI_SMBUS_HC_PROTOCOL_GET_ARP_MAP GetArpMap;
 EFI_SMBUS_HC_PROTOCOL_NOTIFY Notify;
} EFI_SMBUS_HC_PROTOCOL;

Parameters
Execute

Executes the SMBus operation to an SMBus slave device. See the Execute()
function description.

ArpDevice

Allows an SMBus 2.0 device(s) to be Address Resolution Protocol (ARP). See the
ArpDevice() function description.

GetArpMap

Allows a driver to retrieve the address that was allocated by the SMBus host
controller during enumeration/ARP. See the GetArpMap() function description.

Notify

Allows a driver to register for a callback to the SMBus host controller driver when
the bus issues a notification to the bus controller driver. See the Notify() function
description.

14 April 2004 Version 0.9

 Draft for Review Code Definitions

Description
The EFI_SMBUS_HC_PROTOCOL provides SMBus host controller management and basic data
transactions over SMBus. There is one EFI_SMBUS_HC_PROTOCOL instance for each SMBus
host controller.
Early chipset drivers can communicate with specific SMBus slave devices by calling this protocol
directly. Also, for drivers that are called during the Boot Device Selection (BDS) phase, the device
driver that wishes to manage an SMBus bus in a system retrieves the
EFI_SMBUS_HC_PROTOCOL instance that is associated with the SMBus bus to be managed. A
device handle for an SMBus host controller will minimally contain an
EFI_DEVICE_PATH_PROTOCOL instance and an EFI_SMBUS_HC_PROTOCOL instance.

Version 0.9 April 2004 15

SMBus Host Controller Protocol Specification Draft for Review

EFI_SMBUS_HC_PROTOCOL.Execute()

Summary
Executes an SMBus operation to an SMBus controller. Returns when either the command has been
executed or an error is encountered in doing the operation.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_EXECUTE_OPERATION) (
 IN EFI_SMBUS_HC_PROTOCOL *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN EFI_SMBUS_DEVICE_COMMAND Command,
 IN EFI_SMBUS_OPERATION Operation,
 IN BOOLEAN PecCheck,
 IN OUT UINTN *Length,
 IN OUT VOID *Buffer
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.
SlaveAddress

The SMBus slave address of the device with which to communicate. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Intel® Platform Innovation
Framework for EFI SMBus PPI Specification.

Command

This command is transmitted by the SMBus host controller to the SMBus slave
device and the interpretation is SMBus slave device specific. It can mean the offset to
a list of functions inside an SMBus slave device. Not all operations or slave devices
support this command's registers. Type EFI_SMBUS_DEVICE_COMMAND is
defined in EFI_PEI_SMBUS_PPI.Execute() in the Intel® Platform Innovation
Framework for EFI SMBus PPI Specification.

Operation

Signifies which particular SMBus hardware protocol instance that it will use to
execute the SMBus transactions. This SMBus hardware protocol is defined by the
SMBus Specification and is not related to EFI. Type EFI_SMBUS_OPERATION is
defined in EFI_PEI_SMBUS_PPI.Execute() in the Intel® Platform Innovation
Framework for EFI SMBus PPI Specification.

PecCheck

Defines if Packet Error Code (PEC) checking is required for this operation.

16 April 2004 Version 0.9

 Draft for Review Code Definitions

Length

Signifies the number of bytes that this operation will do. The maximum number of
bytes can be revision specific and operation specific. This field will contain the actual
number of bytes that are executed for this operation. Not all operations require this
argument.

Buffer

Contains the value of data to execute to the SMBus slave device. Not all operations
require this argument. The length of this buffer is identified by Length.

Description
The Execute() function provides a standard way to execute an operation as defined in the
System Management Bus (SMBus) Specification. The resulting transaction will be either that the
SMBus slave devices accept this transaction or that this function returns with error.

Status Codes Returned
EFI_SUCCESS The last data that was returned from the access matched the poll exit

criteria.

EFI_CRC_ERROR Checksum is not correct (PEC is incorrect)

EFI_TIMEOUT Timeout expired before the operation was completed. Timeout is
determined by the SMBus host controller device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_DEVICE_ERROR The request was not completed because a failure that was reflected in
the Host Status Register bit. Device errors are a result of a transaction
collision, illegal command field, unclaimed cycle (host initiated), or bus
errors (collisions).

EFI_INVALID_PARAMETER Operation is not defined in EFI_SMBUS_OPERATION.

EFI_INVALID_PARAMETER Length/Buffer is NULL for operations except for
EfiSmbusQuickRead and EfiSmbusQuickWrite.
Length is outside the range of valid values.

EFI_UNSUPPORTED The SMBus operation or PEC is not supported.

EFI_BUFFER_TOO_SMALL Buffer is not sufficient for this operation.

Version 0.9 April 2004 17

SMBus Host Controller Protocol Specification Draft for Review

EFI_SMBUS_HC_PROTOCOL.ArpDevice()

Summary
Sets the SMBus slave device addresses for the device with a given unique ID or enumerates the
entire bus.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_PROTOCOL_ARP_DEVICE) (
 IN EFI_SMBUS_HC_PROTOCOL *This,
 IN BOOLEAN ArpAll,
 IN EFI_SMBUS_UDID *SmbusUdid, OPTIONAL
 IN OUT EFI_SMBUS_DEVICE_ADDRESS *SlaveAddress OPTIONAL
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.
ArpAll

A Boolean expression that indicates if the host drivers need to enumerate all the
devices or enumerate only the device that is identified by SmbusUdid. If ArpAll
is TRUE, SmbusUdid and SlaveAddress are optional. If ArpAll is FALSE,
ArpDevice will enumerate SmbusUdid and the address will be at
SlaveAddress.

SmbusUdid

The Unique Device Identifier (UDID) that is associated with this device. Type
EFI_SMBUS_UDID is defined in EFI_PEI_SMBUS_PPI.ArpDevice() in the
Intel® Platform Innovation Framework for EFI SMBus PPI Specification.

SlaveAddress

The SMBus slave address that is associated with an SMBus UDID. Type
EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Intel® Platform Innovation
Framework for EFI SMBus PPI Specification.

Description
The ArpDevice() function provides a standard way for a device driver to enumerate the entire
SMBus or specific devices on the bus.

18 April 2004 Version 0.9

 Draft for Review Code Definitions

Status Codes Returned
EFI_SUCCESS The last data that was returned from the access matched the poll exit

criteria.

EFI_CRC_ERROR Checksum is not correct (PEC is incorrect)

EFI_TIMEOUT Timeout expired before the operation was completed. Timeout is
determined by the SMBus host controller device.

EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.

EFI_DEVICE_ERROR The request was not completed because a failure was reflected in the
Host Status Register bit. Device Errors are a result of a transaction
collision, illegal command field, unclaimed cycle (host initiated), or bus
errors (collisions).

Version 0.9 April 2004 19

SMBus Host Controller Protocol Specification Draft for Review

EFI_SMBUS_HC_PROTOCOL.GetArpMap()

Summary
Returns a pointer to the Address Resolution Protocol (ARP) map that contains the ID/address pair
of the slave devices that were enumerated by the SMBus host controller driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_PROTOCOL_GET_ARP_MAP) (
 IN EFI_SMBUS_HC_PROTOCOL *This,
 IN OUT UINTN *Length,
 IN OUT EFI_SMBUS_DEVICE_MAP **SmbusDeviceMap
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.
Length

Size of the buffer that contains the SMBus device map.
SmbusDeviceMap

The pointer to the device map as enumerated by the SMBus controller driver. Type
EFI_SMBUS_DEVICE_MAP is defined in
EFI_PEI_SMBUS_PPI.GetArpMap() in the Intel® Platform Innovation
Framework for EFI SMBus PPI Specification.

Description
The GetArpMap() function returns the mapping of all the SMBus devices that were enumerated
by the SMBus host driver.

Status Codes Returned
EFI_SUCCESS The SMBus returned the current device map.

20 April 2004 Version 0.9

 Draft for Review Code Definitions

EFI_SMBUS_HC_PROTOCOL.Notify()

Summary
Allows a device driver to register for a callback when the bus driver detects a state that it needs to
propagate to other drivers that are registered for a callback.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_HC_PROTOCOL_NOTIFY) (
 IN EFI_SMBUS_HC_PROTOCOL *This,
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data,
 IN EFI_SMBUS_NOTIFY_FUNCTION NotifyFunction
);

Parameters
This

A pointer to the EFI_SMBUS_HC_PROTOCOL instance.
SlaveAddress

Address that the host controller detects as sending a message and calls all the
registered function. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Intel® Platform Innovation
Framework for EFI SMBus PPI Specification.

Data

Data that the host controller detects as sending a message and calls all the registered
function.

NotifyFunction

The function to call when the bus driver detects the SlaveAddress and Data
pair. Type EFI_SMBUS_NOTIFY_FUNCTION is defined in "Related Definitions"
below.

Description
The Notify() function registers all the callback functions to allow the bus driver to call these
functions when the SlaveAddress/Data pair happens.

Version 0.9 April 2004 21

SMBus Host Controller Protocol Specification Draft for Review

Related Definitions
//***
// EFI_SMBUS_NOTIFY_FUNCTION
//***
typedef
EFI_STATUS
(EFIAPI *EFI_SMBUS_NOTIFY_FUNCTION) (
 IN EFI_SMBUS_DEVICE_ADDRESS SlaveAddress,
 IN UINTN Data
);

SlaveAddress

The SMBUS hardware address to which the SMBUS device is preassigned or
allocated. Type EFI_SMBUS_DEVICE_ADDRESS is defined in
EFI_PEI_SMBUS_PPI.Execute() in the Intel® Platform Innovation
Framework for EFI SMBus PPI Specification.

Data

Data of the SMBus host notify command that the caller wants to be called.

Status Codes Returned
EFI_SUCCESS NotifyFunction was registered.

22 April 2004 Version 0.9

	Intel® Platform Innovation Framework for EFI SMBus Host Controller Protocol Specification
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Design Discussion
	Overview
	Related Information
	SMBus Host Controller Protocol Terms
	SMBus Host Controller Protocol Overview

	3. Code Definitions
	Introduction
	SMBus Host Controller Protocol
	EFI_SMBUS_HC_PROTOCOL
	EFI_SMBUS_HC_PROTOCOL.Execute()
	EFI_SMBUS_HC_PROTOCOL.ArpDevice()
	EFI_SMBUS_HC_PROTOCOL.GetArpMap()
	EFI_SMBUS_HC_PROTOCOL.Notify()

