Den webbläsarversion som du använder rekommenderas inte för den här webbplatsen.
Du bör uppgradera till den senaste versionen av webbläsaren genom att klicka på någon av följande länkar.

Power Efficiency Through Innovative Architecture

Advanced performance for highly parallel workloads

What is the Intel® Xeon Phi™ coprocessor?

Intel® Xeon Phi™ coprocessors are PCI Express* form factor add-in cards that work synergistically with Intel® Xeon® processors to enable dramatic performance gains for highly parallel code—up to 1.2 double-precision teraFLOPS (floating point operations per second) per coprocessor.1

Manufactured using Intel’s 22nm technology with 3-D Tri-Gate transistors, each coprocessor features more cores, more threads, and wider vector execution units than an Intel® Xeon® processor. The high degree of parallelism compensates for the lower speed of each core to deliver high aggregate performance for highly parallel workloads.2 3 4

What Applications Can Benefit from the Intel® Xeon Phi™ Coprocessor

While most applications will continue to achieve maximum performance on Intel® Xeon® processors, certain highly parallel applications will benefit dramatically by using Intel® Xeon® Phi™ coprocessors. To take full advantage of Intel® Xeon Phi™ coprocessors, an application must scale well to over 100 software threads and either make extensive use of vectors or efficiently use more local memory bandwidth than is available on an Intel® Xeon® processor. Examples of segments with highly parallel applications include animation, energy, finance, life sciences, manufacturing, medical, public sector, weather, and more. 

Learn more about Intel® Many Integrated Core Architecture (Intel® MIC Architecture) development.

Think "Reuse" Rather Than "Recode"

Since languages, tools, and applications are compatible for both Intel® Xeon® processors and Intel® Xeon Phi™ coprocessors, now you can think “reuse” rather than “recode.”

Single programming model for all your code. The Intel® Xeon Phi™ coprocessor gives developers a hardware design point optimized for extreme parallelism, without requiring them to re-architect or rewrite their code. No need to rethink the entire problem or learn a new programming model; simply recompile and optimize existing code using familiar tools, libraries, and runtimes.

Performance multiplier. By maintaining a single source code between Intel® Xeon® processors and Intel® Xeon Phi™ coprocessors, developers optimize once for parallelism, but maximize performance on both processor and coprocessor.

Execution flexibility. Designed from the ground up for high-performance computing. Unlike a graphics processing unit (GPU), a coprocessor can be fully IP addressable, run offloaded code, and support standards such as Message Passing Interface (MPI). Additionally, it can operate in multiple execution modes:

  • "Symmetric" mode: Workload tasks are shared between the host processor and coprocessor.
  • "Native" mode: Workload resides entirely on the coprocessor, and essentially acts as a separate compute node.
  • "Offload" mode: Workload resides on the host processor, and parts of the workload are sent out to the coprocessor as needed. Note: GPUs can only be run in mode and often sit idle.

When Do I Use Intel® Xeon® Processors and Intel® Xeon Phi™ Coprocessors?

Pick the right tool for the right job. With Intel® Xeon® processors, you have the power needed for high-performance computing (HPC) workloads with parallel and serial components. The Intel® Xeon Phi™ coprocessors are optimized to be the right choice for highly parallel workloads with programmability benefits like single source, converging ISA, and a common environment.

Produkt- och prestandainformation

1

Anspråk baserat på beräknad teoretisk Peak Double-precision prestandakapacitet för en enda coprocessor. 16 DP FLOPS/klocka/kärna * 61 kärnor * 1,238 GHz = 1,208 TeraFLOPS.

2

Egenskaperna och fördelarna med Intel® tekniker är beroende av systemkonfiguration och kan kräva aktiverad maskinvara, programvara eller aktivering av tjänst. Prestandan varierar beroende på systemkonfiguration. Inget datorsystem kan vara helt och hållet säkert. Tala med systemtillverkaren eller återförsäljaren eller få mer information på http://www.intel.com.

3

Programvara och arbetsbelastningar som används i prestandatest kan ha anpassats särskilt för att användas på Intel® mikroprocessorer. Prestandatester, som SYSmark och MobileMark, mäts med hjälp av särskilda datorsystem, komponenter, program, åtgärder och funktioner. Om någon av de här faktorerna ändras kan även utfallet av testet ändras. Du bör jämföra med annan information och andra prestandatest för att få en helt rättvisande bild inför köpet, inklusive prestanda för den tänkta produkten i kombination med andra produkter. Läs mer på www.intel.com/benchmarks.

4

Kostnadsreduktionsscenarier som beskrivs är avsedda som exempel på hur en viss Intel® baserad produkt, under angivna omständigheter och med angivna konfigurationer, kan påverka framtida kostnader och ge kostnadsbesparingar. Omständigheterna varierar. Intel garanterar inte några kostnader eller kostnadsreduktioner.